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INTRODUCTION Anti-TIGIT treatment promotes activation of T and NK cells in the tumor Anti-TIGIT treatment induces PD changes in tumor
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In tumors, TIGIT is highly expressed on a subset of dysfunctional T and NK cells and on highly suppressive regulatory T cells (Treg). 5 & Y {— : ‘I‘ e + A g 1% N P % : s s T, CDS8 T-cell Cat 5 . s
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Loss of TIGIT signaling enhances NK cell activity, CD4+ T cell priming and CD8+ T cell effector functions, suggesting a role in anti-tumor immunity. * % ="d T r < 20{e O . o % 2], . I T " 2" 2"
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mouse models. Pharmacodynamic (PD) biomarkers in blood and in tumor were also identified, using flow cytometry, immunohistochemistry, and n=6-7 animals per group. *, ** indicates P<0.05, 0.01, respectively, vs saline by one-way ANOVA followed by Dunnett's post test. him 2 * - g
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Our preclinical biomarker data can be utilized to demonstrate target engagement for our clinical stage anti-TIGIT antibody, OMP-313M32. and NK cells. tumor infiltrating leukocytes. Teml--- Caz g 201 g 10 g T
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313R12 is a surrogate rabbit-mouse chimeric IgG2a monoclonal antibody that binds murine TIGIT (produced by OncoMed Pharmaceuticals). . Ta 9.3 ‘ - B. Total Cd4+ and Cd8+ T cells EZ‘;;W
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Female Balb/c (4T1 and CT26.WT) or C57BI/6J (B16F10) mice, 6-8 weeks old, were purchased from Envigo and Charles River Laboratories. The syngeneic models were developed from cells T % 2 el et tsetiin®. . 225 Sopee - 0 o treated mice were fixed and embedded in paraffin Th1 cell iing Panel B: gRT-PCR analysis confirmed anti-TIGIT dose-dependent increases of
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For flow cytometry, tumor samples were dissociated into single cell suspensions and incubated with cocktails of multiple antibodies for membrane markers or intracellular cytokines. Prior to | / J , e ¢ & ‘ : ’ Saline 0.1 0.5 2.5 125
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1.6% (PFA, Alfa Aesar, Haverhill, MA). Data were acquired and analyzed on a Fortessa X20 flow cytometer using the FACS DIVA software (BD Biosciences, San Jose, CA). o ’ . g P R . . .
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For immunohistochemistry (IHC), TIGIT expression studies in human tumors and associated stroma and tumor infiltrating lymphocytes (TILs) were performed at QualTek Laboratories (Newtown, oy L 28 Ly . o b P § > 4 > ) ) 9 y
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For measuring NK cell cytotoxic activity, spleens were processed into a single cell suspension and cultured overnight. Cytotoxic activity was determined by adding calcein AM-labeled YAC-1 Cd3e cdsa Ncrl
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tumors from different syngeneic models. Immune cells.
» Using in vivo syngeneic mouse models, we have identified PD biomarkers in blood and in tumors that are consistent with the
Panels D, E, and F show the percentage of mice in each treatment group that had TV<750, 600 and 1500 mm? at the end of study (EOS). These The overall incidence of TIGIT staining on the plasma membrane of tumor cells was infrequent and low intensity. Mining RNAseq data also showed mechanism of action of anti-TIGIT. These biomarkers can be used in the clinic to demonstrate activity of anti-TIGIT antibody, OMP-
values of 750, 600 and 1500 mm?3 were approximately half of the tumor volume in the control groups. low and infrequent TIGIT expression on tumor cells in a panel of 27 patient derived xenograft (PDX) models from OncoMed'’s tumor bank (data not 313M32. A Phase 1a clinical trial of OMP-313M32 is planned for the first half of 2017.
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